
Advanced Graphics

A
le

x
B

en
to

n,
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

 –
 A

.B
en

to
n@

da
m

tp
.c

am
.a

c.
uk

Su
pp

or
te

d
in

 p
ar

t b
y

G
oo

gl
e

U
K

, L
td

“C
ornell Box” by Steven Parker, U

niversity of U
tah.

A
 tera-ray m

onte-carlo rendering of the C
ornell B

ox, generated in 2 C
PU

 years on an O
rigin 2000. The full im

age
contains 2048 x 2048 pixels w

ith over 100,000 prim
ary rays per pixel (317 x 317 jittered sam

ples). O
ver one

trillion rays w
ere traced in the generation of this im

age.

Ray Tracing
All the maths

1

Ray tracing

● A powerful alternative to polygon scan-conversion techniques
● An elegantly simple algorithm:

Given a set of 3D objects, shoot a ray from the eye through the
center of every pixel and see what it hits.

2

The algorithm
Select an eye point and a screen plane.
for (every pixel in the screen plane):

Find the ray from the eye through the pixel’s center.
for (each object in the scene):

if (the ray hits the object):
if (the intersection is the nearest (so far) to the eye):

Record the intersection point.
Record the color of the object at that point.

Set the screen plane pixel to the nearest recorded color.

3

Examples

All images are from the POV-Ray Hall of Fame: hof.povray.org

"Glasses" by Gilles Tran (2006)
“Villarceau Circles” by Tor Olav Kristensen (2004)

"Dancing Cube" by Friedrich A. Lohmueller (2003)"S
ch

er
k-

C
ol

lin
s

sc
ul

pt
ur

e"
 b

y
Tr

ev
or

 G
. Q

ua
yl

e
(2

00
8)

"POV Planet" by Casey Uhrig (2004)

4

http://hof.povray.org/glasses.html
http://www.oyonale.com/
http://hof.povray.org/Villarceau_Circles-CSG.html
http://subcube.com/
http://hof.povray.org/bowbox11.html
http://www.f-lohmueller.de/index.htm
http://hof.povray.org/sherk-collins.html
http://barberofcivil.deviantart.com/
http://barberofcivil.deviantart.com/
http://hof.povray.org/pov-planet.html
http://www.c0d3m0nk3y.com/

The basic algorithm is
straightforward, but there's
much room for subtlety
● Refraction
● Reflection
● Shadows
● Anti-aliasing
● Blurred edges
● Depth-of-field effects
● …

typedef struct{double x,y,z;}vec;vec U,black,amb={.02,.02,.02};
struct sphere{vec cen,color;double rad,kd,ks,kt,kl,ir;}*s,*best
,sph[]={0.,6.,.5,1.,1.,1.,.9,.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5
,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,1.,.3,.7,0.,0.,1.2,3
.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,1.,5.,0
.,0.,0.,.5,1.5,};int yx;double u,b,tmin,sqrt(),tan();double
vdot(vec A,vec B){return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(
double a,vec A,vec B){B.x+=a*A.x;B.y+=a*A.y;B.z+=a*A.z;return
B;}vec vunit(vec A){return vcomb(1./sqrt(vdot(A,A)),A,black);}
struct sphere*intersect(vec P,vec D){best=0;tmin=10000;s=sph+5;
while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+
s->rad*s->rad,u=u>0?sqrt(u):10000,u=b-u>0.000001?b-u:b+u,tmin=
u>0.00001&&u<tmin?best=s,u:tmin;return best;}vec trace(int
level,vec P,vec D){double d,eta,e;vec N,color;struct sphere*s,
*l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d=-vdot(D,N=vunit(vcomb(-1.,P=vcomb(
tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d=
-d;l=sph+5;while(l-->sph)if((e=l->kl*vdot(N,U=vunit(vcomb(-1.,P
,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e,l->color,color);
U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*eta*(
1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(
eta*d-sqrt(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(
2*d,N,D)),vcomb(s->kd,color,vcomb(s->kl,U,black))));}main(){int
d=512;printf("%d %d\n",d,d);while(yx<d*d){U.x=yx%d-d/2;U.z=d/2-
yx++/d;U.y=d/2/tan(25/114.5915590261);U=vcomb(255.,trace(3,
black,vunit(U)),black);printf("%0.f %0.f %0.f\n",U.x,U.y,U.z);}
}/*minray!*/Paul Heckbert’s ‘minray’ ray tracer, which fit

on the back of his business card. (circa 1983)

It doesn’t take much code

5

The ray tracing time for a scene is a function of
(num rays cast) x
(num lights) x
(num objects in scene) x
(num reflective surfaces) x
(num transparent surfaces) x
(num shadow rays) x
(ray reflection depth) x …

Contrast this to polygon rasterization: time is a function of the
number of elements in the scene times the number of lights.

Image by nVidia

Running time

6

Once you have the point P (the intersection of the ray with
the nearest object) you’ll compute how much each of the
lights in the scene illuminates P.
diffuse = 0
specular = 0
for (each light Li in the scene):

if (N•L) > 0:
[Optionally: if (a ray from P to Li can reach Li):]

diffuse += kD(N•L)
specular += kS(R•E)n

intensity at P = ambient + diffuse + specular

E

L1

P

L2

L3

N

Ray-traced illumination

7

A ray is defined parametrically as
P(t) = E + tD, t ≥ 0 (α)

where E is the ray’s origin (our eye position) and D is the
ray’s direction, a unit-length vector.

We expand this equation to three dimensions, x, y and z:
x(t) = xE + txD
y(t) = yE + tyD t ≥ 0 (β)
z(t) = zE + tzD

Hitting things with rays

8

Hitting things with rays:
Sphere

The unit sphere, centered at the origin, has the implicit equation
x2 + y2 + z2 = 1 (γ)

Substituting equation (β) into (γ) gives
(xE+txD)2 + (yE+tyD)2 + (zE+tzD)2 = 1

which expands to
t2(xD

2+yD
2+zD

2) + t(2xExD+2yEyD+2zEzD) + (xE
2+yE

2+zE
2-1) = 0

which is of the form
at2+bt+c=0

which can be solved for t:

...giving us two points of intersection.

9

Hitting things with rays:
Cylinder

The infinite unit cylinder, centered at the origin, has the implicit equation
x2 + y2 = 1 (δ)

Substituting equation (β) into (δ) gives
(xE+txD)2 + (yE+tyD)2 = 1

which expands to
t2(xD

2+yD
2) + t(2xExD+2yEyD) + (xE

2+yE
2-1) = 0

which is of the form
at2+bt+c=0

which can be solved for t as before, giving us two points of intersection.

The cylinder is infinite; there is no z term.

10

A planar polygon P can be defined as
Polygon P = {v1, …, vn}

which gives us the normal to P as
N= (vn-v1)×(v2-v1)

The equation for the plane of P is
N•(p - v1) = 0 (ζ)

Substituting equation (α) into (ζ) for p yields
N•(E+tD - v1)=0
xN(xE+txD-xv

1) + yN(yE+tyD-yv
1) + zN(zE+tzD-zv

1)=0

E

N

D

E+tD

Hitting things with rays:
Planes and polygons

11

Half-planes method
● Each edge defines an infinite half-plane

covering the polygon. If the point P lies
in all of the half-planes then it must be in
the polygon.

● For each edge e=vi→vi+1:
○ Rotate e by 90˚ CCW around N.

■ Do this quickly by crossing N with e.
○ If eR•(P-vi) < 0 then the point is outside e.

● Fastest known method.

O

N

D

v1 v2 v3

v…v…

vn

vi

vi+1

P

eeR

Point in convex polygon

12

Barycentric coordinates (tA,tB,tC) are a
coordinate system for describing the location of
a point P inside a triangle (A,B,C).
● You can think of (tA,tB,tC) as ‘masses’

placed at (A,B,C) respectively so that the
center of gravity of the triangle lies at P.

● (tA,tB,tC) are also proportional to the
subtriangle areas.
○ The area of a triangle is ½ the length of the cross

product of two of its sides.

A

B

C

tA
tC

tB

tA+tCP

A

B

C

t1
t3

tB

tA
tC

Q

Barycentric coordinates

13

Winding number
● The winding number of a point P in a

curve C is the number of times that the
curve wraps around the point.

● For a simple closed curve (as any
well-behaved polygon should be) this
will be zero if the point is outside the
curve, non-zero of it’s inside.

● The winding number is the sum of the
angles from vi to P to vi+1.
○ Caveat: This method is elegant but slow.

Figure from Eric Haines’
“Point in Polygon Strategies”,
Graphics Gems IV, 1994

Point in nonconvex polygon

14

Ray casting (1974)
● Odd number of crossings = inside
● Issues:

○ How to find a point that you know is inside?
○ What if the ray hits a vertex?
○ Best accelerated by working in 2D

■ You could transform all vertices such that the coordinate system of
the polygon has normal = Z axis…

■ Or, you could observe that crossings are invariant under scaling
transforms and just project along any axis by ignoring (for
example) the Z component.

● Validity proved by the Jordan curve theorem

Point in nonconvex polygon

15

“Any simple closed curve C divides the points of the
plane not on C into two distinct domains (with no
points in common) of which C is the common
boundary.”
● First stated (but proved incorrectly) by Camille Jordan (1838

-1922) in his Cours d'Analyse.
Sketch of proof : (For full proof see Courant & Robbins, 1941.)

● Show that any point in A can be joined to any other point in A
by a path which does not cross C, and likewise for B.

● Show that any path connecting a point in A to a point in B
must cross C.

A
B

C

The Jordan curve theorem

16

Note that the Jordan curve theorem can be extended to
a curve on a sphere, or anything which is topologically
equivalent to a sphere.
“Any simple closed curve on a sphere separates the

surface of the sphere into two distinct regions.”

A

B

The Jordan curve theorem on a sphere

17

Local coordinates, world coordinates

The cylinder “as it sees
itself”, in local coordinates

The cylinder “as the world sees it”, in world coordinates

5 0 0 0

0 2 0 0

0 0 5 0

0 0 0 1

* =

A 4x4 scale matrix, which
multiplies x and z by 5, y by 2.

A very common technique in graphics is to associate a
local-to-world transform, T, with a primitive.

18

Local coordinates, world coordinates:
Transforming the ray

x=0 x=10

World coordinates

x=-10 x=0

Local coordinates

E

T-1E

In order to test whether a ray hits a transformed object,
we need to describe the ray in the object’s local
coordinates. We transform the ray by the inverse of
the local to world matrix, T-1.

If the ray is defined by
P(t) = E + tD

then the ray in local coordinates is defined by
T-1(P(t)) = T-1(E) + t(T-13x3D)

where T-13x3 is the top left 3x3 submatrix of T-1.

19

Finding the normal

We often need to know N, the normal to the surface at the
point where a ray hits a primitive.

● If the ray R hits the primitive P at point X then N is…

We use the normal for color, reflection, refraction, shadow rays...

Primitive type Equation for N

Unit Sphere centered at the origin N = X

Infinite Unit Cylinder centered at the origin N = [xX, yX, 0]

Infinite Double Cone centered at the origin N = X × (X × [0, 0, zX])

Plane with normal n N = n

20

local

world

T

NL

NW

Converting the normal from local to world
coordinates

To find the world-coordinates normal N from the
local-coordinates NL, multiply NL by the transpose
of the inverse of the top left-hand 3x3 submatrix of
T:

N=((T3x3)
-1)T NL

● We want the top left 3x3 to discard translations
● For any rotation Q, (Q-1)T=Q
● Scaling is unaffected by transpose, and a scale of (a,b,c)

becomes (1/a,1/b,1/c) when inverted

21

Local coordinates, world coordinates
Summary

To compute the intersection of a ray R=E+tD with an object
transformed by local-to-world transform T:
1. Compute R’, the ray R in local coordinates, as

P’(t) = T-1(P(t)) = T-1(E) + t(T-13x3(D))

2. Perform your hit test in local coordinates.
3. Convert all hit points from local coordinates back to

world coordinates by multiplying them by T.
4. Convert all hit normals from local coordinates back to

world coordinates by multiplying them by ((T3x3)-1)T.

This will allow you to efficiently and quickly fire rays at arbitrarily-transformed
primitive objects.

22

Your scene graph and you
Many 2D GUIs today favor an event model in which events ‘bubble up’

from child windows to parents. This is sometimes mirrored in a scene
graph.

● Ex: a child changes size, changing the size of the parent’s bounding box
● Ex: the user drags a movable control in the scene, triggering an update event

If you do choose this approach, consider using the Model View Controller
or Model View Presenter design pattern. 3D geometry objects are
good for displaying data but they are not the proper place for control
logic.

● For example, the class that stores the geometry of the rocket should not be the
same class that stores the logic that moves the rocket.

● Always separate logic from representation.

23

Great for…
● Collision detection between

scene elements
● Culling before rendering
● Accelerating ray-tracing

Your scene graph and you
A common optimization derived

from the scene graph is the
propagation of bounding
volumes.

Nested bounding volumes allow
the rapid culling of large
portions of geometry

● Test against the bounding
volume of the top of the scene
graph and then work down.

24

Speed up ray-tracing with bounding
volumes
Bounding volumes help to quickly accelerate volumetric tests,
such as “does the ray hit the cow?”
● choose fast hit testing over accuracy
● ‘bboxes’ don’t have to be tight
Axis-aligned bounding boxes
● max and min of x/y/z.
Bounding spheres
● max of radius from some rough center
Bounding cylinders
● common in early FPS games

25

Bounding volumes in hierarchy

Hierarchies of bounding
volumes allow early discarding
of rays that won’t hit large
parts of the scene.
● Pro: Rays can skip

subsections of the hierarchy

● Con: Without spatial
coherence ordering the
objects in a volume you hit,
you’ll still have to hit-test
every object

26

Subdivision of space

Split space into cells and list
in each cell every object in
the scene that overlaps that
cell.
● Pro: The ray can skip empty

cells

● Con: Depending on cell size,
objects may overlap many
filled cells or you may waste
memory on many empty
cells

27

The BSP tree partitions the scene into
objects in front of, on, and behind a
tree of planes.
● When you fire a ray into the scene, you test

all near-side objects before testing far-side
objects.

Problems:
● choice of planes is not obvious
● computation is slow
● plane intersection tests are heavy on

floating-point math.

A

B

C

E

F
D

Popular acceleration structures:
BSP Trees

28

Popular acceleration structures:
kd-trees

The kd-tree is a simplification of the
BSP Tree data structure
● Space is recursively subdivided by

axis-aligned planes and points on either side
of each plane are separated in the tree.

● The kd-tree has O(n log n) insertion time
(but this is very optimizable by domain
knowledge) and O(n2/3) search time.

● kd-trees don’t suffer from the mathematical
slowdowns of BSPs because their planes are
always axis-aligned.

Image from Wikipedia, bless their hearts.

29

Popular acceleration structures:
Bounding Interval Hierarchies

The Bounding Interval Hierarchy
subdivides space around the volumes
of objects and shrinks each volume
to remove unused space.
● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is

fired into the scene

Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval
Hierarchy, Eurographics (2006)

30

References
Jordan curves
R. Courant, H. Robbins, What is Mathematics?, Oxford University Press, 1941
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom.html

Intersection testing
http://www.realtimerendering.com/intersections.html
http://tog.acm.org/editors/erich/ptinpoly
http://mathworld.wolfram.com/BarycentricCoordinates.html

Ray tracing
Foley & van Dam, Computer Graphics (1995)
Jon Genetti and Dan Gordon, Ray Tracing With Adaptive Supersampling in Object Space,
http://www.cs.uaf.edu/~genetti/Research/Papers/GI93/GI.html (1993)
Zack Waters, “Realistic Raytracing”,
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html

31

http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom.html
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom.html
http://www.realtimerendering.com/intersections.html
http://www.realtimerendering.com/intersections.html
http://tog.acm.org/editors/erich/ptinpoly/
http://tog.acm.org/editors/erich/ptinpoly/
http://mathworld.wolfram.com/BarycentricCoordinates.html
http://mathworld.wolfram.com/BarycentricCoordinates.html
http://www.cs.uaf.edu/~genetti/Research/Papers/GI93/GI.html
http://www.cs.uaf.edu/~genetti/Research/Papers/GI93/GI.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html

