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“C
ornell Box” by Steven Parker, U

niversity of U
tah.

A
 tera-ray m

onte-carlo rendering of the C
ornell B

ox, generated in 2 C
PU

 years on an O
rigin 2000. The full im

age 
contains 2048 x 2048 pixels w

ith over 100,000 prim
ary rays per pixel (317 x 317 jittered sam

ples). O
ver one 

trillion rays w
ere traced in the generation of this im

age. 

Ray Tracing
All the maths
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Ray tracing

● A powerful alternative to polygon scan-conversion techniques
● An elegantly simple algorithm:

Given a set of 3D objects, shoot a ray from the eye through the 
center of every pixel and see what it hits.
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The algorithm
Select an eye point and a screen plane.
for (every pixel in the screen plane):

Find the ray from the eye through the pixel’s center.
for (each object in the scene):

if (the ray hits the object):
if (the intersection is the nearest (so far) to the eye):

Record the intersection point.
Record the color of the object at that point.

Set the screen plane pixel to the nearest recorded color.
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Examples

All images are from the POV-Ray Hall of Fame: hof.povray.org

"Glasses" by Gilles Tran (2006)
“Villarceau Circles” by Tor Olav Kristensen (2004)

"Dancing Cube" by Friedrich A. Lohmueller (2003)"S
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"POV Planet" by Casey Uhrig (2004) 

4

http://hof.povray.org/glasses.html
http://www.oyonale.com/
http://hof.povray.org/Villarceau_Circles-CSG.html
http://subcube.com/
http://hof.povray.org/bowbox11.html
http://www.f-lohmueller.de/index.htm
http://hof.povray.org/sherk-collins.html
http://barberofcivil.deviantart.com/
http://barberofcivil.deviantart.com/
http://hof.povray.org/pov-planet.html
http://www.c0d3m0nk3y.com/


The basic algorithm is 
straightforward, but there's 
much room for subtlety
● Refraction
● Reflection
● Shadows
● Anti-aliasing
● Blurred edges
● Depth-of-field effects
● …

typedef struct{double x,y,z;}vec;vec U,black,amb={.02,.02,.02};
struct sphere{vec cen,color;double rad,kd,ks,kt,kl,ir;}*s,*best
,sph[]={0.,6.,.5,1.,1.,1.,.9,.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5
,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,1.,.3,.7,0.,0.,1.2,3
.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,1.,5.,0
.,0.,0.,.5,1.5,};int yx;double u,b,tmin,sqrt(),tan();double
vdot(vec A,vec B){return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(
double a,vec A,vec B){B.x+=a*A.x;B.y+=a*A.y;B.z+=a*A.z;return
B;}vec vunit(vec A){return vcomb(1./sqrt(vdot(A,A)),A,black);}
struct sphere*intersect(vec P,vec D){best=0;tmin=10000;s=sph+5;
while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+
s->rad*s->rad,u=u>0?sqrt(u):10000,u=b-u>0.000001?b-u:b+u,tmin=
u>0.00001&&u<tmin?best=s,u:tmin;return best;}vec trace(int
level,vec P,vec D){double d,eta,e;vec N,color;struct sphere*s,
*l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d=-vdot(D,N=vunit(vcomb(-1.,P=vcomb(
tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d=
-d;l=sph+5;while(l-->sph)if((e=l->kl*vdot(N,U=vunit(vcomb(-1.,P
,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e,l->color,color);
U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*eta*(
1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(
eta*d-sqrt(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(
2*d,N,D)),vcomb(s->kd,color,vcomb(s->kl,U,black))));}main(){int
d=512;printf("%d %d\n",d,d);while(yx<d*d){U.x=yx%d-d/2;U.z=d/2-
yx++/d;U.y=d/2/tan(25/114.5915590261);U=vcomb(255.,trace(3,
black,vunit(U)),black);printf("%0.f %0.f %0.f\n",U.x,U.y,U.z);}
}/*minray!*/Paul Heckbert’s ‘minray’ ray tracer, which fit 

on the back of his business card.  (circa 1983)

It doesn’t take much code
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The ray tracing time for a scene is a function of
(num rays cast) x
(num lights) x 
(num objects in scene) x
(num reflective surfaces) x
(num transparent surfaces) x
(num shadow rays) x
(ray reflection depth) x …

Contrast this to polygon rasterization: time is a function of the 
number of elements in the scene times the number of lights.

Image by nVidia

Running time
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Once you have the point P (the intersection of the ray with 
the nearest object) you’ll compute how much each of the 
lights in the scene illuminates P.
diffuse = 0
specular = 0
for (each light Li in the scene):

if (N•L) > 0:
[Optionally: if (a ray from P to Li can reach Li):]

diffuse += kD(N•L)
specular += kS(R•E)n

intensity at P = ambient + diffuse + specular

E

L1

P

L2

L3

N

Ray-traced illumination
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A ray is defined parametrically as
P(t) = E + tD, t ≥ 0 (α)

where E is the ray’s origin (our eye position) and D is the 
ray’s direction, a unit-length vector.

We expand this equation to three dimensions, x, y and z:
x(t) = xE + txD
y(t) = yE + tyD         t ≥ 0 (β)
z(t) = zE + tzD

Hitting things with rays

8



Hitting things with rays:
Sphere

The unit sphere, centered at the origin, has the implicit equation
x2 + y2 + z2 = 1 (γ)

Substituting equation (β) into (γ) gives
(xE+txD)2 + (yE+tyD)2 + (zE+tzD)2 = 1

which expands to
t2(xD

2+yD
2+zD

2) + t(2xExD+2yEyD+2zEzD) + (xE
2+yE

2+zE
2-1) = 0

which is of the form
at2+bt+c=0

which can be solved for t:

...giving us two points of intersection.
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Hitting things with rays:
Cylinder

The infinite unit cylinder, centered at the origin, has the implicit equation
x2 + y2  = 1 (δ)

Substituting equation (β) into (δ) gives
(xE+txD)2 + (yE+tyD)2  = 1

which expands to
t2(xD

2+yD
2) + t(2xExD+2yEyD) + (xE

2+yE
2-1) = 0

which is of the form
at2+bt+c=0

which can be solved for t as before, giving us two points of intersection.

The cylinder is infinite; there is no z term.
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A planar polygon P can be defined as
Polygon P = {v1, …, vn}

which gives us the normal to P as
N= (vn-v1)×(v2-v1)

The equation for the plane of P is
N•(p - v1) = 0 (ζ)

Substituting equation (α) into (ζ) for p yields
N•(E+tD - v1)=0
xN(xE+txD-xv

1) + yN(yE+tyD-yv
1) + zN(zE+tzD-zv

1)=0

E

N

D

E+tD

Hitting things with rays:
Planes and polygons
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Half-planes method
● Each edge defines an infinite half-plane 

covering the polygon.  If the point P lies 
in all of the half-planes then it must be in 
the polygon.

● For each edge e=vi→vi+1:
○ Rotate e by 90˚ CCW around N.

■ Do this quickly by crossing N with e.
○ If eR•(P-vi) < 0 then the point is outside e.

● Fastest known method.

O

N

D

v1 v2 v3

v…v…

vn

vi

vi+1

P

eeR

Point in convex polygon

12



Barycentric coordinates (tA,tB,tC) are a 
coordinate system for describing the location of 
a point P inside a triangle (A,B,C).
● You can think of (tA,tB,tC) as ‘masses’ 

placed at (A,B,C) respectively so that the 
center of gravity of the triangle lies at P.

● (tA,tB,tC) are also proportional to the 
subtriangle areas.
○ The area of a triangle is ½ the length of the cross 

product of two of its sides.

A

B

C

tA
tC

tB

tA+tCP

A

B

C

t1
t3

tB

tA
tC

Q

Barycentric coordinates
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Winding number
● The winding number of a point P in a 

curve C is the number of times that the 
curve wraps around the point.

● For a simple closed curve (as any 
well-behaved polygon should be) this 
will be zero if the point is outside the 
curve, non-zero of it’s inside.

● The winding number is the sum of the 
angles from vi to P to vi+1.
○ Caveat: This method is elegant but slow.

Figure from Eric Haines’
“Point in Polygon Strategies”,
Graphics Gems IV, 1994

Point in nonconvex polygon
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Ray casting (1974)
● Odd number of crossings = inside
● Issues:

○ How to find a point that you know is inside?
○ What if the ray hits a vertex?
○ Best accelerated by working in 2D

■ You could transform all vertices such that the coordinate system of 
the polygon has normal = Z axis…

■ Or, you could observe that crossings are invariant under scaling 
transforms and just project along any axis by ignoring (for 
example) the Z component.  

● Validity proved by the Jordan curve theorem

Point in nonconvex polygon
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“Any simple closed curve C divides the points of the 
plane not on C into two distinct domains (with no 
points in common) of which C is the common 
boundary.”
● First stated (but proved incorrectly) by Camille Jordan (1838 

-1922) in his Cours d'Analyse.  
Sketch of proof : (For full proof see Courant & Robbins, 1941.)

● Show that any point in A can be joined to any other point in A 
by a path which does not cross C, and likewise for B.

● Show that any path connecting a point in A to a point in B 
must cross C.

A
B

C

The Jordan curve theorem
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Note that the Jordan curve theorem can be extended to 
a curve on a sphere, or anything which is topologically 
equivalent to a sphere.
“Any simple closed curve on a sphere separates the 

surface of the sphere into two distinct regions.”

A

B

The Jordan curve theorem on a sphere
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Local coordinates, world coordinates

The cylinder “as it sees 
itself”, in local coordinates

The cylinder “as the world sees it”, in world coordinates

5 0 0 0

0 2 0 0

0 0 5 0

0 0 0 1

* =

A 4x4 scale matrix, which 
multiplies x and z by 5, y by 2.

A very common technique in graphics is to associate a 
local-to-world transform, T, with a primitive.
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Local coordinates, world coordinates:
Transforming the ray

x=0 x=10

World coordinates

x=-10 x=0

Local coordinates

E

T-1E

In order to test whether a ray hits a transformed object, 
we need to describe the ray in the object’s local 
coordinates.  We transform the ray by the inverse of 
the local to world matrix, T-1.

If the ray is defined by 
P(t) = E + tD

then the ray in local coordinates is defined by
T-1(P(t)) = T-1(E) + t(T-13x3D)

where T-13x3 is the top left 3x3 submatrix of T-1.
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Finding the normal

We often need to know N, the normal to the surface at the 
point where a ray hits a primitive.

● If the ray R hits the primitive P at point X then N is…

We use the normal for color, reflection, refraction, shadow rays...

Primitive type Equation for N

Unit Sphere centered at the origin N = X

Infinite Unit Cylinder centered at the origin N = [ xX, yX, 0 ]

Infinite Double Cone centered at the origin N = X  × (X × [ 0, 0, zX ])

Plane with normal n N = n
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local

world

T

NL

NW

Converting the normal from local to world 
coordinates

To find the world-coordinates normal N from the 
local-coordinates NL, multiply NL by the transpose 
of the inverse of the top left-hand 3x3 submatrix of 
T:

N=((T3x3)
-1)T NL

● We want the top left 3x3 to discard translations
● For any rotation Q, (Q-1)T=Q
● Scaling is unaffected by transpose, and a scale of (a,b,c) 

becomes (1/a,1/b,1/c) when inverted
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Local coordinates, world coordinates
Summary

To compute the intersection of a ray R=E+tD with an object 
transformed by local-to-world transform T:
1. Compute R’, the ray R in local coordinates, as 

P’(t) = T-1(P(t)) = T-1(E) + t(T-13x3(D))

2. Perform your hit test in local coordinates.
3. Convert all hit points from local coordinates back to 

world coordinates by multiplying them by T.
4. Convert all hit normals from local coordinates back to 

world coordinates by multiplying them by ((T3x3)-1)T.

This will allow you to efficiently and quickly fire rays at arbitrarily-transformed 
primitive objects.
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Your scene graph and you
Many 2D GUIs today favor an event model in which events ‘bubble up’ 

from child windows to parents.  This is sometimes mirrored in a scene 
graph.

● Ex: a child changes size, changing the size of the parent’s bounding box
● Ex: the user drags a movable control in the scene, triggering an update event

If you do choose this approach, consider using the Model View Controller 
or Model View Presenter design pattern.  3D geometry objects are 
good for displaying data but they are not the proper place for control 
logic.

● For example, the class that stores the geometry of the rocket should not be the 
same class that stores the logic that moves the rocket.

● Always separate logic from representation.
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Great for…
● Collision detection between 

scene elements
● Culling before rendering
● Accelerating ray-tracing

Your scene graph and you
A common optimization derived 

from the scene graph is the 
propagation of bounding 
volumes.

Nested bounding volumes allow 
the rapid culling of large 
portions of geometry

● Test against the bounding 
volume of the top of the scene 
graph and then work down.
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Speed up ray-tracing with bounding 
volumes
Bounding volumes help to quickly accelerate volumetric tests, 
such as “does the ray hit the cow?”
● choose fast hit testing over accuracy
● ‘bboxes’ don’t have to be tight
Axis-aligned bounding boxes
● max and min of x/y/z.
Bounding spheres
● max of radius from some rough center
Bounding cylinders 
● common in early FPS games
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Bounding volumes in hierarchy

Hierarchies of bounding 
volumes allow early discarding 
of rays that won’t hit large 
parts of the scene.
● Pro: Rays can skip 

subsections of the hierarchy

● Con: Without spatial 
coherence ordering the 
objects in a volume you hit, 
you’ll still have to hit-test 
every object
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Subdivision of space

Split space into cells and list 
in each cell every object in 
the scene that overlaps that 
cell.
● Pro: The ray can skip empty 

cells

● Con: Depending on cell size, 
objects may overlap many 
filled cells or you may waste 
memory on many empty 
cells
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The BSP tree partitions the scene into 
objects in front of, on, and behind a 
tree of planes.
● When you fire a ray into the scene, you test 

all near-side objects before testing far-side 
objects.

Problems: 
● choice of planes is not obvious
● computation is slow
● plane intersection tests are heavy on 

floating-point math.

A

B

C

E

F
D

Popular acceleration structures:
BSP Trees
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Popular acceleration structures:
kd-trees

The kd-tree is a simplification of the 
BSP Tree data structure 
● Space is recursively subdivided by 

axis-aligned planes and points on either side 
of each plane are separated in the tree.

● The kd-tree has O(n log n) insertion time 
(but this is very optimizable by domain 
knowledge) and O(n2/3) search time.

● kd-trees don’t suffer from the mathematical 
slowdowns of BSPs because their planes are 
always axis-aligned.

Image from Wikipedia, bless their hearts.
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Popular acceleration structures:
Bounding Interval Hierarchies

The Bounding Interval Hierarchy 
subdivides space around the volumes 
of objects and shrinks each volume 
to remove unused space.
● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is 

fired into the scene

Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval 
Hierarchy, Eurographics (2006)
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